
Microservices and DevOps

DevOps and Container Technology
Broker Pattern

Henrik Bærbak Christensen



Distribution

• We stay in the realm of client-server architectures

– One logical server, reactive – just responding to requests

– Multiple clients, proactive – requesting behavior by server

• Clients do not know other clients

• We disregard security for now!

– Because it is important but cumbersome…

CS@AU Henrik Bærbak Christensen 2



Broker’s intent

• To allow OO paradigm for programming

• … where an object may reside on another computer

• However - networks only support two asynch functions!

CS@AU Henrik Bærbak Christensen 3

Compare with REST



Issues (at least!)

• Send/receive is a too low level a programming model

• Send() does not wait for a reply from server (Asynch)

• Reference to object on my machine does not make 

sense on remote computer (memory address)

• Networks does not transfer objects, just bits

• Networks are slow

• Networks and Remote computers may fail

• Networks are insecure, others may listen

CS@AU Henrik Bærbak Christensen 4

Performance QA

Availability QA

Security QA



Elements Overview

• Solutions are

– Request/Reply Protocol

• Simulate synchronous call (solves (partly) concurrency issue)

– Marshalling + Demarshalling

• Packing objects into bits and back (solves data issue)

– Proxy Pattern (and Broker pattern)

• Simulate method call on client (solves programming model issue)

– Naming Services

• Use a registry/name service (solves remote location issue)

CS@AU Henrik Bærbak Christensen 5



Broker



Motivation

• C’mon Henrik? Broker is so yesterday!

– Everything is REST, GraphQL, no one do .NET remoting!

• Right, I agree, but…

– It is a bit sad. I think vendors stole the pattern and turned into a 

big ball of mud: SOAP, WSDL, CORBA IDL, Java Security model, 

[WebService(Namespace=http://kissmycensored.org/)]

– From an architectural point of view, Broker is a clean pattern, 

well defined roles with architectural integrity

– Broker allows tweaking all the architectural qualities 

(performance, availability, security, …) in a clean fashion

• In contrast, REST is pretty big ball of mud!

CS@AU Henrik Bærbak Christensen 7
Therefore We will spend energy on it!

http://kissmycensored.org/


Motivation

• But we will use both in this course

– Primary client-server connection is Broker based

• We will use the FRDS.Broker library which

– Is a lightweight Broker pattern (no fancy tool support)

– Therefore requires a little bit of handcoding

• So we can get detailed control the architectural QAs…

• And I also brainwash you all to acknowledge the beauty of Broker ☺

– Secondary server-service connections are HTTP/REST based

• Use what-ever library you like

• So you also code ‘what is widely used out there’

• And hopefully see some of its deficiencies ☺

CS@AU Henrik Bærbak Christensen 8



Broker

• Broker

– Complex pattern

– Three levels

• Domain level

• Marshalling level

• IPC level

– Two mirrored ‘sides’

• Client side

• Server side

• Let’s have a look at

each…

CS@AU Henrik Bærbak Christensen 9



The ‘Side’ Perspective

• Client side

CS@AU Henrik Bærbak Christensen 10



The ‘Side’ Perspective

• Server side

CS@AU Henrik Bærbak Christensen 11



Dynamics (Client)

CS@AU Henrik Bærbak Christensen 12



Dynamics (Server)

CS@AU Henrik Bærbak Christensen 13



The Flow

• Method call flows

through well defined

roles, each with

its specific 

responsibility

– Translating from

high level OO method

to binary network

and back again…

CS@AU Henrik Bærbak Christensen 14



Domain Level

• Domain level represents the actual Role

CS@AU Henrik Bærbak Christensen 15



Marshalling Level

• Encapsulate translation 

to/from bits and objects

CS@AU Henrik Bærbak Christensen 16



IPC Level

• Interprocess Communication

– Encapsulate low-level OS/Network communication

CS@AU Henrik Bærbak Christensen 17



FRS: Relating to   

• Broker pattern and    ?

– Yes, yes, and yes

•  Encapsulate what varies

– We would like to vary marshalling format: Requestor+Invoker

– We would like to vary IPC method: RequestHandler

•  Object composition

– We delegate to the requestor. We delegate to the RequestHandl.

• However, the roles bleed into each other somewhat

– Often RequestHandlers need additional 

marshalling/demarshalling

– REST and HTTP solves multiple aspects => natural ‘bleeding’

CS@AU Henrik Bærbak Christensen 18



MSDO Fast Track Version

FRDS.Broker in 8 slides



FRDS.Broker

• FRDS.Broker

– Default Impl for

roles that are 

general

• Servant is given

• Remains:

– ClientProxy

– Invoker

• Basically template

code!

CS@AU Henrik Bærbak Christensen 20



So: Let the player move east…

CS@AU Henrik Bærbak Christensen 21

Broker: Let a ‘player.move(d)’ method on the 
client side be ”transparently” translated into a 

‘player.move(d)’ on the server side…



ClientProxy

• Tell requestor to marshall (and beyond), using

– ‘this’ object’s ID

• Actually two parts required to identify object, will return to this later…

– The string constant defined for the move method 

– Return type is UpdateResult.class

– Provide all parameters of the method call

CS@AU Henrik Bærbak Christensen 22



PlayerInvoker

CS@AU Henrik Bærbak Christensen 23

Actual ‘upcall’



Exercise Algorithms ☺

• Iteration 0 contains two Broker exercises.

– Implement the missing PlayerClientProxy methods

– Implement the extra if(opName.equals(”method”)){} upcalls

• Test it using JUnit

– Huh – how? It is remote calls?

• Broker roles to the rescue…

CS@AU Henrik Bærbak Christensen 24



”Fake Object” IPC

CS@AU Henrik Bærbak Christensen 25

LocalMethodCall
ClientRequestHandler

No need to start server.

No concurrency.

All aspects (except IPC) can be TDD’ed

• [Compare with REST!]



Establishing the Chain

• Broker roles are a chain that needs to be established

– Pass ‘servant’ to invoker, pass to request handler, pass to 

requester, pass to client proxy…

– (A bit hidden in SkyCave code due to reusing test fixture in 

multiple places, and because Player is instantiated by a login into 

the cave…)

CS@AU Henrik Bærbak Christensen 26



A Cleaner Version

• From the TeleMed case in the FRDS book…

CS@AU Henrik Bærbak Christensen 27



Summary

CS@AU Henrik Bærbak Christensen 28


